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Term multiplicities in the LS-coupling scheme 

Jacob Katrielt and Akiva Novoselsky$ 
Department of Physics and Atmospheric Science, Drexel University, Philadelphia, 
Pennsylvania 19104, USA 

Received 24 May 1988 

Abstract. Generating functions for the number of states with given total angular momentum 
and spin, for a system of identical fermions or bosons, are presented, along with generating 
functions for the number of states of a system of identical particles with any specified 
permutational symmetry and total spin. The spin of each particle could be any integral 
or half-integral number. A specific example for a system of particles with a pseudospin 
s = $ is presented. The extension of the generating functions for a system of particles which 
carry more than two angular momenta is made. 

The determination of the number of states arising out of the coupling of N particles 
with a given elementary spin and statistics is a straightforward counting problem, 
which for few-particle systems can easily be carried out using elementary methods 
(de-Shalit and Talmi 1963). For a system consisting of a large number of particles 
this approach becomes prohibitively tedious. A more powerful method has recently 
been discussed (Katriel et a1 1983, Sunko and Svrtan 1985, Sunko 1986). The central 
result, arrived at by somewhat different routes by Katriel et a1 (1983) and by Sunko 
and Svrtan (1985), is that a set of generating functions for the number of many-body 
states with a specific total spin and statistics can be constructed. These generating 
functions are very closely related to the Gaussian polynomials (Andrews 1976). A 
brief presentation of this method follows. 

For N particles, each with spin 1, we denote the number of states (NOS) with a 
given value M of the z component of the total spin b y f z '  and 62 '  for fermions and 
bosons, respectively. The generating functions 

f"J(x) =c x M f , G  N I 

M 

are defined. (The letters a and b in these and the following equation numbers refer 
to fermions and bosons, respectively.) These generating functions can be obtained for 
higher values of N and 1 using the recurrence relations they satisfy (Katriel et a1 1983), 
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or otherwise using the grand generating functions 
2 / + l  

f ‘ ( x ;  z ) =  fi ( l + z x ” ) =  Z”f”*’(X) ( 2a )  
m = - /  N = O  

b ’ ( x ; z ) =  fi ( l - z x ” ) - ’ =  2 zNbN,’(x),  
m = - /  “ 0  

These results provide the solution for the state enumeration problem for both fermions 
and bosons, in the jj-coupling scheme. 

As a simple example consider a system of equivalent fermions with elementary 
angular momentum j =#.  Using ( 2 a )  we obtain 

f312(x; Z) = (1 + Z X - ~ ’ ~ ) ( ~  + zx-l/2)(i  + Z X I / ~ ) (  1 + zx3I2) 

= 1 + (z + z3)(x-3”+x-l’?+x”?+x3’2) + zz(x-2+x-’  + 2 + x  + x’) + z4 
(3) 

which means that for one and three particles the total angular momentum is L = 3, for 
two particles L=O or 2 and for four particles L=O. In none of the above cases is 
there any degeneracy. 

The LS-coupling scheme, involving the simultaneous coupling of two types of 
angular momentum, has originally been introduced in atomic physics to describe the 
electronic states of light atoms in which spin-orbit coupling is small relative to the 
electrostatic interelectronic repulsion (Condon and Odabasi 1980). In a calculation 
involving many electrons the number of states with given total angular momentum 
and spin could be very large, possibly beyond current numerical computational limits. 
In such cases it is important to know this number a priori. 

The LS-coupling scheme is important also for many other areas in physics, for 
example, in nuclear physics. When the shell model was introduced in nuclear physics 
it was realised that the strong spin-orbit coupling suggestsjj coupling as the appropriate 
scheme for nuclear calculations. However, even in this context the introduction of 
isospin results in a situation analogous to the LS-coupling scheme (i.e. JT coupling). 
Furthermore, the LS-coupling scheme was used in the nuclear pseudo-SU(3) model 
(Arima er a1 1969, Hecht and Adler 1969). Recently, the fermion dynamical symmetry 
model for nuclei was introduced (Wu et a1 1986, 1987). In this model the total angular 
momentum of a nucleon is decomposed into a pseudo-orbital angular momentum k 
and ,a  pseudospin i. 

The enumeration of the allowed states in the LS-coupling scheme using the elemen- 
tary method (Breit 1926, Condon and Odabasi 1980) is tedious. Thus, a systematisation 
of this counting problem was proposed by Shudeman (1937). Another approach, based 
on the reduction of the representations of the symmetric group spanned by the many 
electron product states, was developed by Curl and Kilpatrick (1960). This approach 
results in a generating function for the number of states for N electrons with given 
values of the total orbital and spin angular momenta, and represents a significant 
improvement over the direct counting procedure. A further development of the group 
theoretical approach was introduced by Karayianis (1969, who derived recursion 
relations for the number of LS states. All these approaches were developed for spin-4 
fermions. 

In the present paper we formulate an approach which is a generalisation of the 
method described above for a system of particles with a single type of angular 
momentum. This method applies to both fermions and bosons, with arbitrary values 
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of the single particle orbital and spin angular momenta. The generating functions 
obtained have a very compact and  transparent form. 

We denote by Fz,'&\(B$,$,) the number of antisymmetric (symmetric) states of a 
system of N particles, each with an  angular momentum I and a spin s, whose total z 
components 

are defined. 

are M and M,, respectively. The corresponding generating functions 

The generating functions ( 4 a )  and ( 4 b )  for two angular momenta are the 
generalisation of the one angular momentum generating functions ( l a )  and ( 1  b ) .  

The grand generating functions 

are the generalisation of the grand generating functions ( 2 a )  and ( 2 b )  for two angular 
momenta. They can be written in the form 

F'."x,y; 2)' fJ fi ( l + z x m y m l )  
m = - 1  my=- . y  

B ' J ( x ,  y ;  z )  = fi fi ( 1  - ZXmym,)-'. ( 6 b )  

These expressions can also be obtained by interpreting the present problem as a 
multipartite partition (Andrews 1976). Thus, the generalisation to a system of particles 
each one of which has three (or more) types of angular momenta (such as in L S T  
coupling) is straightforward. The generalisation of the grand generating functions, 
( 6 a )  and ( 6 b ) ,  to the case of n types of angular momentum can be written in the form 

m = - l  m = - s  

n 1, 

F ' J ~ * . J , ~ ( X 1 ,  x2, . . . , x,; z )  = n n 1 + z fl X1"f ( 7 a )  
i = l  m , = - f ,  ( ,II, ) 

( x , , x *  , . . . )  x , ; z ) = n  n ( 1 - z J J x y 1  , I l  ) - I  . 

and 
n 1, 

( 7 b )  BII , I 2  ...., I ,> 

r = l  m , = - I ,  

Here, I , ,  I , ,  . . . , I ,  are the values of the n different single particle angular momenta. 

of N particles with z components M I ,  M2,.  . . , M, of the n total angular momenta. 

The generating functions just introduced ( ( 6 4  b )  and (7a ,  b ) )  provide the multi-M- 
scheme multiplicity, forming the natural generalisation of the M-scheme generating 
functions, ( 2 a )  and ( 2 b ) .  The transition from the M scheme to the L scheme for a 
system of N fermions with a single kind of angular momentum is carried out by noting 
that the number of states (or  the degeneracy of a state) with a given value L of the 
resultant angular momentum quantum number is given by (de-Shalit and  Talmi 1963) 

In ( 7 a ) ,  the coefficient of z N  II:=, xi?, is F1,,,,, 'W,,I, ,.... ,,,,, ',, M,,r the number of fermion states 

For bosons, B M , , M ,  N 3 ' ~ * ' 2 s . - * ' , ?  ,,,,, M, is similarly defined, and  obtained from (76). 

(8) FY1-Fril. 
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For a system of fermions possessing two kinds of angular momenta the number of 
states (or the degeneracy of a state) with given L and S is 

(9) @ N . l , s  = ~ N . l , s - ~ N , l , y  Nf  S + FN,f ,T  
L,S L.S L + ~ , s - F L : ~ + ~  ~ + i . s + i *  

The last expression, equation (9), resulted as a simple generalisation to LS coupling 
of (8). In  this case we have to subtract from the NOS for M = L, M, = S the NOS for 
M = L+ 1 ,  M ,  = S and M = L, A& = S + 1 .  However, because the Nos for M = L+ 1 ,  
M ,  = S + 1 is subtracted twice in this way, it has to be added once. Applying the same 
argument for a system of fermions possessing three kinds of angular momentum I , ,  l2 
and 1 3 ,  yields that the number of states with total angular momenta L , ,  L2 and L3 is 

) L ~ ,  L,+ 1 L~ + F L , .  L,, ~ , + i  
@ y;.;2 = F N ? / ) ? f l , / ,  - ( FN8/1,f23’3 + FN?f13f2%/3 WIJ2J3  

L , ,  L,, L, L ,  + 1, L,,L, 

( 1 0 )  v.1 , / , . I 3  NJIJ2.l3 NJ,  ,/J, N.1, .l,./3 
+ ( F L , : i . L 2 + i , L 3  + F L , + i , L , , L 3 + i  + F L I . L ; + i . L , + i )  - F L I + i , L 2 + i , L , + i *  

The generalisation of ( 1 0 )  to the case of n types of angular momentum can be 
written in the form 

where I,, 1 2 , .  . . , 1, are the n types of single particle angular momentum and 
L ,  , L 2 ,  . . . , L, are the corresponding N-particle angular momenta. The integer k 
denotes the number of angular momenta in which the M value is increased by unity 
relative to the value of interest (i.e. L , ,  L 2 , .  . . , L,). For any given value k, all the 
possibilities of taking k different types of angular momentum from n ones have to be 
taken into account, and  this is done by the second summation in ( 1 1 ) .  Equation ( 1 1 )  
can be rewritten in a form in which the parameter k does not appear explicitly 

The relations ( 8 ) - ( 1 2 )  also hold for boson systems, where the NOS factors F have 

As an  example we consider a system of N = 3 fermions with 1 = 1 and pseudospin 
to be replaced by the corresponding factors B. 

s = $ .  The coefficient of z 3  in the grand generating function, ( 6 a ) ,  is 
7 / 2  + bYS/2 + 11y3/2 (x, Y 1 = ( Y 9 l 2  + 3Y ~ 3 , 1 , 3 / 2  

+ 1 3 y ” ’ +  N P )  + ( y ” 2 + 2 y s ’ 2 +  N P ) ( X 2 + 2 X +  NP)  

+ ( Y 3 ’ 2 +  N P ) ( X 3 + 4 X 2 + 8 X +  N P ) +  (yi”+ N P ) ( X 3 +  5 X 2 +  l ox+  NP)  ( 1 3 )  

where NP stands for the terms with negative powers which, because of the M, - M  
symmetry, are in one-to-one correspondence with the terms with positive powers, 
presented. Using the M, M,  scheme multiplicities as determined by the generating 
function, ( 1 3 ) ,  we transform to the LS scheme by the rule given above (equation (9)), 
finding that the following fermionic states can be formed: 

L=O 9 S = ’ S  2 9 2 , -  4 
L = 2  9 s=’ 2 , 2 9 2 9 2  5 3 1 

L =  l ,S=; , ; ,$ ( twice) , f  

L = 3  9 s=’ 2 .  

The antisymmetric states in the LS-coupling scheme were enumerated above by 
using the grand generating function, ( 6 a ) .  On the other hand, these states can be 
constructed in terms of direct products of conjugate irreducible representations (irreps) 
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of the unitary groups U(21+ 1) and U(2s + 1). These irreps are labelled by Young 
shapes (Wybourne 1970). Therefore, the generating function Fw.‘3’(x, y )  can be expan- 
ded as 

(14) FN,’.’(X, y )  = 1 { [ A I ,  A’,. . . , AkI}”’(x){[Ai, A z , .  . . , AkI’)N’’(y) 
[ A i . A z .  , A A ]  

where 

{ [ A , ,  A 2 , .  . . , A k ] } N ~ ’ ( ~ ) = C { [ A l , A 2 , .  . . , Ak]}$‘xM 
M 

is the generating function for the number of states of N particles with angular 
momentum I and total z component M, belonging to the irrep [ A l ,  A 2 ,  . . . , Ak].  Note 
that { [ N ] } N 3 ’ ( ~ )  = bN3’(x) and {[1N]}N3‘(~)  =fN3’(x) ,  where bN3’(x) andfN-‘(x)  are the 
boson and fermion generating functions defined in (1 a )  and (1 b ) .  The grand generating 
functionsf‘(x, z )  and b’(x, z )  are the generating functions for the elementary symmetric 
functions and the homogeneous product sums, respectively (Wybourne 1970). There- 
fore, the generating functionsf N s / (  x )  and b N 3 ’ (  x )  are the Schur functions corresponding 
to the symmetric and alternative representations of the symmetric group, in terms of 
the set of symmetric power sums 

/ 

S,  = C X”. 
m = - /  

For an arbitrary irrep the generating function is the appropriate Schur function 
(Wybourne 1970, p 20). 

As an illustration we consider the example treated above, i.e. N = 3, 1 = 1 and s = 5 .  
In this case the following irrep generating functions are needed: 

{[3I3,’(x) = (S: + 3S,Sz+ 2S3)/6 

U ,  11}3*1(x) = cs: - S3)/3 (17) 

{[ 1 3 ] } 3 ” ( ~ )  = (S: - 3SlSz + 2S3)/6 

where the expressions for S,  ( r  = 1,2,3)  are given in (16). In particular, for 1 = 1 and 
s = 5 the irrep generating functions are: 

{[3]}3’’(X) = X3 + X z  + 2 X  + 2 +  N P  

{[3]}3,3 ’(x) = X ~ ’ ~ + X ~ ’ ~ + ~ X ~ ’ ~ + ~ X ~ ’ ~ + ~ X ~ ’ ~ +  N P  

{[2, 1]3”(X) = X2+2X+2+ N P  

{[2, 1 1 } ~ - ~ ’ ~ ( x )  = x7’2+2x5’2+3x3’2+4x112+ N P  

{[13]}3J(x) = 1 
{[13]}3’3’2(X) = X 3 i 2 + X 1 ’ 2 + N p .  

Substituting these expressions in (14) one obtains 

F3”’3’2(X, y )  = ( X 3 +  X’+ 2X $. 2 +  NP)(J’3’z+y1’2 N P )  

+ (X2+2X + 2 + NP)(y7’2+2y5’z +3y3l2 f 4 y 1 ” +  N P )  

(19) + (Y 9’2 + Y 7 l 2  + 2y5’2 + 3Y3l2 + 3y”’ + NP). 

This expression is identical to the one obtained above (equation (13)), using the grand 
generating function F1*3’2(x, y ,  z ) .  
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A useful property which sometimes enables the reduction of an irrep generating 
function into the irrep generating function of a Young shape with a smaller number 
of boxes follows from the generating function appropriate for a closed shell. For 
particles with angular momentum 1, a Young shape consisting of k columns, each one 
of which has 21 -t 1 boxes, generates only the closed shell state with L = 0. Therefore, 

( x )  = 1. (20) 
Consequently, a Young shape consisting of k columns of length 21 + 1 and additional 
columns of lengths h k + l ,  A L + ? ,  . . . has the same generating function as the Young shape 
obtained by dropping the first k columns, 

{[ k ? / -  I]} h 
k l 2 1 ~ 1  ) , I  

{[(21+ I)', A k - 1 ,  h k + 2 , .  . .]-}""(X)={[AL+I, A k + 2 , .  . .]')"''(X) (21) 
where N = ( 2 1 + l ) k + N ' a n d  N ' = A k t l + A k t 2 +  . . .  . 

From the closed shell property, (201, it also follows that the generating functions 
corresponding to two Young shapes which complement one another into a closed 
shell, are equal. Thus, a generating function for a Young shape with k columns is 
equal to the generating function for a Young shape with the same number of columns 
but with 21+1-Ak_,+,  boxes in its ith column ( i =  1 , 2 , .  . . , k),  i.e. 
{ [AI  , A > ,  . . . , Ak]'} ""(X) = {[21+ 1 - hk,  21 1 - A a - 1 ,  . . . , 21 + 1 - A I]-} " " ( X )  (22) 
where N'+ N = (21+ 1)k. This equality corresponds to the well known particle-hole 
symmetry. 

The following simple examples illustrate (21) and (22): 

{[3,2]}"' '(X)={[1]}' 1 ' 2 ( X ) = X 1  2 + N P  (23) 

(24) 
{[3, 1, I]}'.'(x) = {[2]}2s'(~) = {[2, 2]}4%1 = x '+x+  1 + NP. (25) 

Equation ( 2 3 )  is an example of the property expressed by (21), equation (24) is an  
example of the particle-hole symmetry, (22), and in (25) we used both properties. 

In conclusion, the form of the generating functions for the M, M ,  scheme multi- 
plicities in the LS-coupling scheme, and its generalisation to the case of n different 
types of angular momentum, for both fermions and bosons, has been reported. Further- 
more, generating functions for the M-scheme multiplicities of states corresponding to 
any irrep of the symmetric group have been defined and  their relation to the correspond- 
ing Schur functions has been pointed out. 

The generating functions introduced in this work yield all the possible allowed LS 
states for fermions and bosons and all the allowed states for any Young shape (irrep 
of the symmetric group) without constructing explicitly the states, i.e. calculating their 
coefficients of fractional parentage (CFP) (Novoselsky et a1 1988). Therefore, these 
generating functions are useful for any calculation in atomic, nuclear or  quark physics 
which does not depend on the structure of the allowed states. 

{[3, 2]}5"(X) = {[3, 1]}"'(X) = X3+2X2+3X+3 + N P  
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